The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light

نویسنده

  • Shay Solomon
چکیده

Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communication networks. Abu-Affash, Aschner, Carmi and Katz (SWAT 2010, [1]) showed that for any n-point 2-dimensional Euclidean space M , the weight of the MST of every connected SDG for M is O(log n) ·w(MST (M)), and that this bound is tight. However, the upper bound proof of [1] relies heavily on basic geometric properties of constant-dimensional Euclidean spaces, and does not extend to Euclidean spaces of super-constant dimension. A natural question that arises is whether this surprising upper bound of [1] can be generalized for wider families of metric spaces, such as highdimensional Euclidean spaces. In this paper we generalize the upper bound of Abu-Affash et al. [1] for Euclidean spaces of any dimension. Furthermore, our upper bound extends to arbitrary metric spaces and, in particular, it applies to any of the normed spaces p. Specifically, we demonstrate that for any n-point metric space M , the weight of the MST of every connected SDG for M is O(log n) · w(MST (M)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The MST of Symmetric Disk Graphs (in Arbitrary Metrics) is Light

Consider an n-point metric M = (V, δ), and a transmission range assignment r : V → R+ that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communication ne...

متن کامل

The MST of Symmetric Disk Graphs

Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R+ that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communicat...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

The MST of Symmetric Disk Graphs Is Light

Symmetric disk graphs are often used to model wireless communication networks. Given a set S of n points in R (representing n transceivers) and a transmission range assignment r : S → R, the symmetric disk graph of S (denoted SDG(S)) is the undirected graph over S whose set of edges is E = {(u, v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where |uv| denotes the Euclidean distance between points u and v. ...

متن کامل

Investigation of absorption pump light distribution in edged-pumped high power Yb:YAGYAG disk laser

In this article, we present a specific shape of disk laser which is side-pumped by four non-symmetric hollow- ducts. The use of non-symmetric hollow duct based on two goals of the uniformity of the pump light distribution profile and the homogeneity of pump light profile through the disk. First of all we simulated the pump light distribution in the disk by using Monte-Carlo ray tracing method. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011